Predict the top-k coefficient functions based on a qrglasso
class object.
predict(
qrglasso_object,
metric_type = "BIC",
top_k = 5,
degree = 2,
boundaries = c(0, 1),
is_approx = FALSE
)
A qrglasso
class object.
Character. Metric type for gamma selection, e.g., BIC
, BIC-log
. Default is BIC
.
Integer. The number of top estimated functions to predict. Default is 5.
Integer. Degree of the piecewise polynomial. Default is 2.
Array. Two boundary points for the piecewise polynomial. Default is c(0, 1).
Logical. If TRUE, the size of covariate indexes will be 1e6; otherwise, 1e4. Default is FALSE.
A list containing:
coef_functions
Matrix. The estimated top-k coefficient functions with dimension (\(m \times k\)), where \(m\) is the size of z
.
z
Array. Index predictors used in the generation.
set.seed(123)
n <- 100
p <- 5
L <- 5
Y <- matrix(rnorm(n), n, 1)
W <- matrix(rnorm(n * p * (L - 1)), n, p * (L - 1))
# Call qrglasso with default parameters
result <- qrglasso(Y = Y, W = W, p = p)
#> All values of gamma are zeros when lambda > 3.90694
#>
estimate <- predict(result)
print(dim(estimate$coef_functions))
#> [1] 10000 5